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1. INTRODUCTION 

 
 
The task of information retrieval is to extract relevant documents for a certain query from the 

collection of documents. As large sets of documents are now increasingly common, there is a 

growing need for fast and efficient information retrieval algorithms. The algorithms we are 

dealing with are embedded in the vector space model. 

The vector space model is implemented by creating the term-document matrix and a vector of 

query. Let the list of relevant terms be numerated from 1 to m and documents be numerated 



from 1 to n. The term-document matrix is an m × n matrix A = [aij], where aij represents the 

weight of term i in document j. On the other side, we have a query or customer’s request. In the 

vector space model, queries are presented as m-dimensional vectors. The simple vector space 

model is based on literal matching of terms in the documents and the queries. But we certainly 

know that literal matching of terms does not necessarily retrieve all relevant documents. 

Synonyms (more words with the same meaning) and polysemies (words with multiple meaning) 

are two major obstacles in information retrieval.  

The method of LSI was introduced in 1990 [5] and improved in 1995 [4]. It represents 

documents as approximations and tends to cluster documents on similar topics even if their term 

profiles are somewhat different. This approximate representation is accomplished by using a 

low-rank singular value decomposition (SVD) approximation of the term-document matrix. 

Kolda and O'Leary [12] proposed replacing SVD in LSI by the semi-discrete decomposition that 

saves memory space. Although the LSI method has empirical success, it suffers from the lack of 

interpretation for the low-rank approximation and, consequently, the lack of controls for 

accomplishing specific tasks in information retrieval. The explanation of Latent Semantic 

Indexing efficiency in terms of multivariate analysis is provided in [2,7,13,15]. A method by 

Dhillon and Modha [6] uses centroids of clusters created by the spherical k-means algorithm or 

so-called concept decomposition (CD) for lowering the rank of the term-document matrix. 

Appling this method, the space on which the term-document matrix is projected is more 

interpretable. Namely, it is a space spread by centroids of clusters. The information retrieval 

technique using concept decomposition is called concept indexing (CI). Furthermore, the 

concept decomposition method is computationally more efficient and requires less memory then 

LSI.   

Here we compare SVD/LSI and CD/CI in terms of matrix approximations and precision of 

information retrieval. A comparison is done on an academic example where vectors of 

documents and terms are projected on a two-dimensional space (so they can be shown 



graphically in a plane) and on MEDLINE and CRANFIELD collections. Also, we propose an 

improvement of CD using the fuzzy k-means algorithm and compare this method to the CI 

method using CD by spherical k-means (CDSKM). We have experimentally shown that the 

projection of the term-document matrix on centroids obtained by the fuzzy k-means algorithm 

results in a better approximation of the term-document matrix in the sense of the Frobenius 

norm. Also, we investigate how this improvement in approximation reflects on information 

retrieval. In [6], it is shown experimentally that centroids achieved by the spherical k-means 

algorithm tend to orthonormality as k raises. We will show here that centroids created by fuzzy 

k-means algorithm tend to orthonormality faster. 

When we lower the term-document matrix rank, an important question of choice of the right 

dimension of approximation for the purpose of information retrieval arises. We show here that, 

when applying CI, there is high correlation between the quality of clustering and mean average 

precision of information retrieval. This means that the dimension of approximation should be 

selected according to the natural number of clusters in a specific collection.   

The paper is organized as follows. Sections 2 and 3 describe LSI and CI applying CDFKM. In 

Section 4, we compare these two methods on an academic example. A computational 

comparison of LSI and CI on a large collection of documents is given in Section 5.   

 
2. THE VECTOR SPACE MODEL AND LSI 
 
 
Let the m × n matrix A = [aij] be the term-document matrix. Then aij is the weight of the i-th 

term in the j-th document.  The standard procedure is to normalize the columns of the matrix to 

be of unit norm. The term-document matrix has an important property of being sparse, i.e. most 

of its elements are zeros.  

A query has the same form as a document; it is a vector, which on the i-th place has the 

frequency of the i-th term in the query. We never normalize the vector of the query because it 



has no effect on document ranking. A common measure of similarity between the query and the 

document is the cosine of the angle between them. 

In order to rank documents according to their relevance to the query, we compute s = qT A, 

where q is the vector of the query and the j-th entry in s  represents the score in relevance of the 

j-th document. 

The LSI method is just a variation of the vector space model. The fundamental mathematical 

result that supports LSI [10] is that for any m × n matrix A, the following singular value 

decomposition exists: 

 TVUA Σ= , (1) 
 

where U is the m × m orthogonal matrix, V is the n × n orthogonal matrix and Σ is the m × n 

diagonal matrix 

 ),,...,(diag 1 pσσ=Σ  (2) 

where p = min{m, n} and σ1 ≥ σ2 ≥ ...≥ σp ≥ 0. The σi are the singular values and ui and vi are 

the i-th left singular vector and the i-th right singular vector respectively. 

The second fundamental result [9] is the theorem by Eckart and Young, which states that the 

distance in the Frobenius norm between A and its k-rank approximation is minimized by the 

approximation Ak. Here  

 T
kkkk VUA Σ= , (3) 

where Uk is the m × k matrix which columns are the first k columns of U, Vk is the n × k matrix 

which columns are the first k columns of V, and Σk is the k × k diagonal matrix which diagonal 

elements are the k largest singular values of A. More precisely, 
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We call Ak truncated SVD of A  and space spread by columns of U k k -dimensional LSI 

subspace.  

The ranking of documents according to their relevance to the query for the LSI method is 

executed by calculating the score vector VUqs T
kkk

T Σ= . 

 
 
3. CONCEPT DECOMPOSITION 
 
In this section, we describe the concept decomposition by the fuzzy k-means algorithm 

(CDFKM). 

The fuzzy k-means algorithm (FKM) [8,16] generalizes the hard k-means algorithm. The goal of 

the k-means algorithm is to cluster n objects (here documents) in k clusters and find k mean 

vectors or centroids for clusters. Here we will call these mean vectors concepts, because that is 

what they present. The spherical k-means algorithm used in [6] is just a variation of the hard k-

means algorithm, which uses the fact that document vectors (and concept vectors) are of the unit 

norm.  

As opposed to the hard k-means algorithm, which allows a document to belong to only one 

cluster, FKM allows a document to partially belong to multiple clusters. FKM seeks a minimum 

of a heuristic global cost function 
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where njx j ,,1, K=  are vectors of documents, kici ,,1, K=  are concept vectors, µ ij  is the 

fuzzy membership degree of document x j  in the cluster whose concept is ci  and b  is a weight 

exponent of the fuzzy membership. In general, the J fuzz  criterion is minimized when concept 

ci  is close to those documents that have a high fuzzy membership degree for cluster 
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for which the cost function reaches a local minimum. 

We will obtain concept vectors starting with arbitrary concept vectors kici ,,1,)0( K=  and 

computing fuzzy membership degrees )(t
ijµ , cost function J t

fuzz
)(  and new concept vectors c t

i
)1( +  

iterative, where t  is the index of iteration, until ε<−+ JJ t
fuzz

t
fuzz

)()1(  for some threshold ε . 

In the special case when, instead of computing µ ij according to formula (6) in each iteration we 

put   
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we obtain the hard k-means algorithm. 

Our target is to approximate each document vector by a linear combination of concept vectors. 

The concept matrix is an m × k matrix which j-th column is the concept vector cj, that is 

 [ ].,, 21 cccC kk K=   (9)                                    



If we assume linear independence of the concept vectors, then it follows that the concept matrix 

has rank k. Now we define the concept decomposition Pk of the term-document matrix A as the 

least-squares approximation of A on the column space of the concept matrix Ck. Concept 

decomposition is an m × n matrix  

 ZCP kk
*=   (10) 

where  Z* is  the solution of  the least-squares problem, that is  

 ( ) ACCCZ T
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 It can be shown that, for the term-document matrix, rank k  approximation obtained by SVD 

satisfies 
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So, this approximation is, in fact, the least-squares approximation of matrix A  onto the column 

space of matrix U k . 

 

4. AN EXAMPLE 

In this section we compare the efficiency of LSI and CI by CDFKM on the collection of 15 

documents (titles of books), where 9 are from the field of data mining, 5 are from the field of 

linear algebra and 1 is a combination of these fields (application of linear algebra on data 

mining). The documents are listed in Table 1. A list of terms is formed from words contained in 

at least two documents, after which words on the stop list are ejected (conjunctions, articles…) 

and variations of words are mapped on the same characteristic form (e.g. the terms matrix and 

matrices are mapped on the term matrix, or applications and applied are mapped on 

application). As a result, we obtained a list of 16 terms which we have divided in three parts: 8  



 

 

Table 1: Documents and their categorization (DM - data mining documents, 

LA – linear algebra documents). Document D6 is a combination of the two 

categories. Words from the list of terms are underlined. 

 

terms from the field of data mining (text, mining, clustering, classification, retrieval, 

information, document, data), 5 terms from the field of linear algebra (linear, algebra, matrix, 

vector, space) and 3 neutral terms (analysis, application, algorithm).  

Then we have created a term-document matrix and normalized the columns of it to be of the 

unit norm. To such a matrix we have applied CDFKM (k=2) and truncated SVD (k=2). Let the 

truncated SVD be VU T
222Σ  and CDFKM be ZC *

2 . In truncated SVD, rows of U 2  are the 

Number Categorization Document 

D1 DM Survey of text mining: clustering, classification, and 
retrieval 

D2 DM Automatic text processing: the transformation analysis 
and retrieval of information by computer 

D3 LA Elementary linear algebra: A matrix approach 

D4 LA Matrix algebra and its applications in statistics and 
econometrics 

D5 DM Effective databases for text and document management 

D6 Combination Matrices, vector spaces, and information retrieval 

D7 LA Matrix analysis and applied linear algebra 

D8 LA Topological vector spaces and algebras 

D9 DM Information retrieval: data structures and algorithms 

D10 LA Vector spaces and algebras for chemistry and physics 

D11 DM Classification, clustering and data analysis 

D12 DM Clustering of large data sets 

D13 DM Clustering algorithms 

D14 DM Document warehousing and text mining: techniques 
for improving business operations, marketing and sales 

D15 DM Data mining and knowledge discovery 



approximate (two-dimensional) representation of terms, while rows of V 2  are the approximate 

(two-dimensional) representation of documents. Here we neglect Σ2  part, since Σ2  is a 

diagonal matrix and produces only scaling of the axes. In CDFKM, rows of C2  are approximate 

representations of terms and columns of Z*  are approximate representations of documents. 

Coordinates of terms are listed in Table 2, while coordinates of documents and queries are listed 

in Table 3. Also, on Figure 1 and 2 images of terms are plotted. From Figure 1 we can see that 

images of two groups of terms, data mining (DM) terms and linear algebra (LA) terms are 

grouped together in the case of truncated SVD. In the case of CDFKM, two groups of terms are 

generally grouped along the axes: along y axis (and near y axis) we have DM terms, and along x  

axis we have LA terms. Exceptions are terms information and retrieval. Our assumption is that 

this is because the model was confused by D6 document, which contains these terms and LA 

terms.  

We have also created two queries (underlined words are from the list of terms):   

1) Q1: Data mining 

2) Q2: Using linear algebra for data mining. 

For Q1 all data mining documents are relevant, while for Q2 only D6 document is relevant. 

Most of the DM documents do not contain words data and mining. Such documents will not be   

 

 

 

 



 

Term SVD CDFKM 
 xi yi xi yi 

  text 0,2093 -0,3075 0,0988 0,4296 
  mining 0,1613 -0,2876 0,0050 0,4217 
  clustering 0,2374 -0,4090 0,0796 0,4800 
  classification 0,1162 -0,1802 0,0000 0,2348 
  retrieval 0,2652 -0,1997 0,2865 0,1111 
  analysis 0,2071 -0,0921 0,1874 0,1242 
  information 0,2077 -0,1090 0,2865 0,0003 
  linear 0,1855 0,1423 0,2018 0,0012 
  algebra 0,4960 0,4020 0,5439 0,0023 
  matrix 0,3700 0,2508 0,4049 0,0012 
  application 0,1855 0,1423 0,2031 0,0000 
  document 0,0873 -0,1588 0,0000 0,3185 
  vector 0,2915 0,1946 -0,3163 0,0011 
  space 0,2915 -0,1946 0,3163 0,0011 
  data 0,2495 -0,4110 0,1041 0,4669 
  algorithm 0,1110 -0,1671 0,1787 0,0699 

 
Table 2. Coordinates of the terms by SVD and CDFKM 

 
 

Document SVD CDFKM 

 xi yi xi yi 
D1 0,2383 -0,3543 0,0613 0,7377 
D2 0,2395 -0,2028 0,3779 0,2564 
D3 0,3271 0,2628 0,6919 -0,1369 
D4 0,3271 0,2628 0,6928 -0,1378 
D5 0,1130 -0,1888 -0,0384 0,5367 
D6 0,3435 0,0848 0,7400 -0,0979 
D7 0,3479 0,2164 0,7063 -0,0848 
D8 0,3356 0,2615 0,7075 -0,1401 
D9 0,2245 -0,2538 0,3779 0,2479 
D10 0,3356 0,2615 0,7075 -0,1401 
D11 0,2182 -0,3127 0,0561 0,6416 
D12 0,1855 -0,3320 -0,0054 0,6706 
D13 0,1327 -0,2332 0,1086 0,3670 
D14 0,1424 -0,2492 -0,0796 0,6914 
D15 0,1565 -0,2828 -0,0518 0,6388 
Q1 0,2213 -0,3999 -0,0732 0,9033 
Q2 0,5668 -0,0291 0,7034 0,7502 

 
                 Table 3. Coordinates of documents and queries by SVD and CDFKM 

 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Images of term by LSI. Data mining terms and linear algebra terms are grouped 

together. y coordinates of data mining terms are negative, while y coordinates of  linear algebra 

terms are positive. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Images of terms by CI. Data mining terms are grouped along y (and near y axis), while 

linear algebra terms are grouped along x axis. Exceptions are terms information and retrieval. 
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Figure 3. Images of documents by LSI. Data mining documents and linear algebra documents 

are grouped in separate groups. D6 document, which is combination of these fields is isolated. 

Shaded areas represent areas of relevant documents for query Q1( Data mining) and query Q2 

(Using linear algebra for data mining). 

 

 

 

 

 

 

 

 

 

 

Figure 4. Images of documents by CI. Linear algebra documents form a compact group together 

with D6 document. Data mining documents are somewhat more dispersed. 
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recognized by the simple term-matching vector space method as relevant. Document D6, 

relevant for Q2, does not contain any of terms from the list contained in the query. In the vector 

space model, the query has the same form as the document. Let q be a representation of the 

query in the vector space model and q~  its approximate representation using truncated SVD. 

Then, the following is satisfied  

 ( ) Σ=⇒Σ= −1
2222

~~ UqqqUq TT .  (13) 

On the other side, since documents are represented as columns of ACCCZ T
kk

T
k

1* )( −=  in CD, 

the approximate representation of the query by CD will be =q~ qCCC T
kk

T
k

1)( − . In Figure 3 and 

4, images of approximate representations of documents and queries are plotted. In the SVD 

projection, DM documents form one group, LA documents another and the D6 document is 

isolated. In the CD projection, LA documents are grouped; DM documents are somewhat more 

dispersed, while D6 document is in the group of LA documents. Shaded areas represent the area 

of relevant documents for queries in the cosine similarity sense.  

Now, let us present the results of retrieval. Retrieved documents for query Q1 in descending 

order, due to their score for the term-matching method, are: D15, D12, D14, D9, D11 and D1. 

Other documents are not retrieved at all, since their score is 0. So, the term-matching method 

has retrieved 6 out of 10 relevant documents. The retrieved documents for Q1 applying LSI are: 

D1, D11, D12, D9, D15, D2, D14, D13, D5 and D6. The score for other documents is much 

lower and we can state that other documents are not retrieved at all. The retrieved documents 

are exactly all the relevant documents.  The retrieved documents for Q1 applying CI are: D1, 

D14, D12, D11, D15, D5, D13, D2 and D9. These are all the relevant documents except D6 

document. For query Q2, only D6 document is relevant. The term-matching method does not 

retrieve it at all, the LSI method recognizes D6 as the most relevant document (although it does 

not contain any term from the query) and the CI method retrieves D6 as the sixth most relevant 

document.  



As a conclusion of this academic example we can state that the LSI and CI methods have a 

similar effect; they cluster documents on the similar topic even if their term profile is different. 

It seems that on this example, LSI is working better. In next section, we compare these two 

techniques on much larger document collections to achieve statistically significant comparisons. 

 

5. EXPERIMENTAL RESULTS 

Experiments were carried out on standard MEDLINE and CRANFIELD collections. Each 

collection comes with a collection of documents, a collection of queries and relevance 

judgments for each query. Relevance judgments are lists of documents relevant to the specific 

query. While the MEDLINE collection consists of 1033 documents and 30 queries, the 

CRANFIELD collection consists of 1400 documents and 225 queries. The list of terms is 

formed by extracting all terms from the documents and then ejecting terms that occur in only 

one document and terms on the stop list of  common words (SMART list of stop words). Terms 

were not stemmed or variations of words were not mapped to the same root form. After this 

procedure we have obtained a list of 5940 terms for the MEDLINE collection and 4758 terms 

for the CRANFIELD collection.  

TEST A. Firstly, we measure the precision of k-rank approximation Pk  obtained by SVD, the 

concept decomposition by the spherical k -means algorithm (CDSKM) and the concept 

decomposition by the fuzzy k -means algorithm (CDFKM) for different ranks of approximation 

k . A common measure is the Frobenius norm of the difference between the term-document 

matrix and its approximation 
FkPA − . From the theorem of  Eckard and Young, we know 

that the best approximation is obtained by SVD. Here, the emphasis is on the comparison of 

approximations obtained by CDSKM and CDFKM. From Figures 5 and 6 it is clear that the 

precision of the k-rank approximation of the term-document matrix is improved by applying 

CDFKM, compared to applying CDSKM. 



TEST B. Secondly, we investigate how the precision of approximation is reflected on the 

precision of information retrieval. For this comparison, we use the standard measure of mean 

average precision that measures the average precision on standard recall levels [1]. In Tables 4 

and 5 and in Figures 7 and 8, a comparison in performance of the LSI method, the CI by 

CDSKM method and the CI by CDFKM method is shown. We can see that the performance of 

CI by CDFKM is better than that of LSI and that the performance of CI by CDSKM is the 

worst, but comparable to the LSI method. In Figure 9 and 10 so called precision-recall plots [1] 

are shown. On precision-recall plots we can see how precision is changing for different levels of 

recall. It is known [5] that using LSI method precision is improved for higher levels of recall. 

From Figures 9 and 10 we can see that using CI causes similar effect. Generally, the 

performance is much better for the MEDLINE collection. For the CRANFIELD collection, the 

LSI and CI methods do not outperform the simple term-matching method for any rank of 

approximation; so the application of these methods does not have any sense.  For the 

MEDLINE collection, the best results are obtained by CDFKM method for the rank of 

approximation of 75 (almost 10% better MAP then by the term-matching method). In this case, 

documents are presented in a 75×1033 matrix instead of a 5940×1033 matrix, as in the case of 

the simple vector space model. Anyway, this is not such a significant saving of memory space 

as it seems at first sight, since the term-document matrix is sparse, but the representations of 

documents by LSI or CI generally are not. In Table 4 and 5, we list memory spaces required for 

matrices that represent documents. The starting term-document matrix is stored in a sparse 

form, while compressed representations are stored as double precision floats. 

TEST C. Here we measure the average inner product between concept vectors cj, j = 1, …, k as  
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The average inner product takes values in interval [0,1], where smaller values correspond to 

concept vectors whose average angle between them is close to π/2. From Figures 11 and 12,  



k CDSKM CDFKM LSI Memory space 
(KB) 

25 36,61 41,71 40,23 202 
50 44,28 50,60 47,79 404 
75 44,09 53,13 48,59 605 
100 44,55 48,96 48,58 807 
125 45,14 49,58 47,68 1009 
150 42,87 49,81 47,35 1221 
175 42,68 49,83 47,08 1412 
200 44,05 49,50 46,62 1614 
225 44,70 49,33 46,34 1816 
250 44,09 49,33 45,82 2018 

Term-matching 43,54 43,54 43,54 616 
 

Table 4. Mean Average Precision and memory space required to 

store documents of the MEDLINE collection for LSI and CI 

(CDSKM and CDFKM) methods. The best results for every method 

are bolded. 

 

k CDSKM CDFKM LSI Memory space 
(KB) 

25 9,66 9,58 9,59 273 
50 12,52 14,00 12,71 547 
75 14,08 15,60 14,74 820 

100 14,85 17,44 16,02 1094 
125 16,33 17,76 16,93 1367 
150 16,21 17,92 17,74 1641 
175 16,98 18,34 18,22 1914 
200 17,35 19,77 18,73 2188 
225 17,95 19,87 18,73 2461 
250 17,42 19,25 18,73 2734 

Term-matching 20,89 20,89 20,89 924 
 

Table 5. Mean Average Precision and memory space required to 

store documents of the CRANFIELD n for the LSI and CI (CDSKM 

and CDFKM) methods. The best results for every method are 

bolded. 



 

  k MAP Jfuzz 
k 1,0000 0,7025 -0,8311

MAP 0,7025 1,0000 -0,9682

Jfuzz -0,8311 -0,9682 1,0000
 
Table 6. Correlation matrix for the 
MEDLINE collection 

  k MAP Jfuzz 
k 1,0000 0,9145 -0,9044

MAP 0,9145 1,0000 -0,9883

Jfuzz -0,9044 -0,9883 1,0000
 
Table 7. Correlation matrix for the 
CRANFIELD collection 

 

we can see that concept vectors obtained by the fuzzy k-means algorithm tend to orthonormality 

faster then those obtained by the spherical k-means algorithm, particularly for the MEDLINE 

test collection. 

TEST D. From Figures 7 and 8, we see that the mean average precision (MAP) obtained by the 

LSI method depends on the rank of approximation being more stable than the MAP achieved by 

the CI method. Now we examine if there is correlation between MAP and the quality of 

clustering for the CI method. In other words, would MAP be better if we chose the rank of 

approximation to be a natural number of clusters for a specific collection? We will take the cost 

function fuzzJ  given in equation (5) as a measure of the quality of clustering. fuzzJ  is 

generalized within the groups sum of square errors function and will take smaller values if the 

number of clusters k is chosen to be the natural number of clusters in the collection. It is obvious 

that growth of rank of approximation generally causes growth of MAP and drop of fuzzJ . We 

have also calculated correlations between MAP and the rank of approximation and  fuzzJ  and 

the rank of approximation to test if MAP and fuzzJ  are directly correlated. Correlations are 

calculated based on 46 observations for the rank of approximation [ ]100,1∈k  and they are 

listed in Table 6 and Table 7. All correlations are on the level of significance p<<0,01. From  

the correlation matrices we see that correlations between MAP and fuzzJ  take the highest 

absolute values for both collections, meaning that those two characteristics are directly  
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Figure 5.  Comparison of approx. errors 

FkPA −  for MEDLINE collection 
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Figure 6. Comparison of approx. errors 

FkPA −  for CRANFIELD collection 
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Figure 7. Mean average precision for MEDLINE 
collection 
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Figure 8. Mean average precision for 
CRANFIELD collection 
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Figure 9. Precision-recall plot for MEDLINE 
collection 
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Figure 10. Precision-recall plot for 
CRANFIELD collection 
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Figure 11. Average scalar product between 
concept vectors for MEDLINE collection 
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Figure 12. Average scalar product between 
concept vectors for CRANFIELD collection 

 

 

correlated. That is a statistical confirmation of the intuition that the number of clusters should be 

chosen according to the large enough number of clusters in the collection. 

 
 

6. CONCLUSIONS AND DISSCUSION  

Concept decomposition methods are computationally more efficient then SVD. Furthermore, 

they can exploit the sparcity of the term-document matrix. The computational complexity of the 

spherical k-means and of fuzzy k-means is O(nmkT), where n is the number of documents, m is 

the number of terms, k is the number of clusters and T is the number of iterations. Although 

complexity for these two algorithms is the same, fuzzy k-means is much more time consuming, 

partly due to more computational operations, partly due to slower convergence. We suggest here 

a modification of the fuzzy k-means algorithm in such a way that the fuzzy membership degree 

of document xj is calculated only for those clusters whose concept vectors are closest to the 

document vector xj (fuzzy membership degrees for other clusters should be 0). 



The fact that matrix approximations obtained by CDSKM and CDFKM are less precise than by 

SVD does not reflect on the precision of information retrieval for the two standard collections 

we have applied. We see that the MAP is comparable for CDSKM and CDFKM with the LSI 

method for the CRANFIELD collection and that CDFKM even outperforms LSI in the case of 

the MEDLINE collection. Also, we notice that, for low ranks of approximation, the mean 

average precision grows fastest for CDFKM. In [5], good retrieval results using LSI are also 

reported for the MEDLINE data set with an explanation of good segmentation of the collection. 

In the case of LSI, documents are projected in the means of the least squares on the space spread 

by the first k left singular vectors while, in the case of CI, documents are projected on the space 

of k concept vectors. By looking at the academic example, we notice that these two methods 

project documents and terms in a completely different way. Yet, the final effect concerning 

information retrieval is similar. For both methods, minor differences in terminology are ignored 

and closeness of objects (query and documents) is determined by the overall pattern of term 

usage, so it is context based. In the case of CI, after projection, documents are presented as a 

linear approximation of concept vectors, terms are substituted intuitively by concepts, which are 

representatives of sets of terms. The reason for better interpretability of the CI method 

compared to LSI is in fact that concept vectors are more interpretable then singular vectors. 

Contrary to singular vectors, concept vectors are sparse and they can be labeled by terms, which 

have the greatest weight in them. Concept vectors have entries different from zero for the terms 

that are characteristic for belonging to the cluster. When the number of clusters grows, term 

matching between concepts decreases and this is the reason why concept vectors tend to 

orthogonality.  

Statistical confirmation of the intuition that MAP of information retrieval by CI is correlated to 

the quality of clustering points in the direction of further work: the application of CI in 

supervised setting, e.g. on collections which are already classified by experts. Certain 

investigations in that direction have already been reported in [11,14].  
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